eldorado.tu-dortmund.de/server/api/core/bitstreams/19d14213-116b-46c9-9210-9383e61d2177/content
circles pε1,ε2,ε3,ε4,ε5,ε6 (or qε1,ε2,ε3,ε4,ε5,ε6) to 32 circles p̃ε1,ε2,ε3,ε4,ε5,ε6 (or q̃ε1,ε2,ε3,ε4,ε5,ε6). p̃ε1,ε2,ε3,ε4,ε5,ε6 is identified with p̃ε1,1−ε2,ε3,ε4,ε5,ε6 and q̃ε1,ε2,ε3,ε4,ε5,ε6 is identified [...] D4 spanZ(e4, e5, e6, e7)
D5 spanZ
( e4,
1 2 e4 +
√ 3
2 e5, e7,
1 2 e7 +
√ 3
2 e6
) E6 spanZ(e4, e5, e6, e7) ∪ ((1
2 , 1
2 , 1
2 , 1
2 ) + spanZ(e4, e5, e6, e7))
The lattice in the case D5 is the same as [...] · (A2, T 3/〈β, γ〉) + 3 · (A2, T
3/〈γ〉) 5 A3 6 · (A1, T
3/〈β, γ〉) + 4 · (A3, T 3/〈β, γ〉) 5
A5 1 · (A5, T 3/〈β, γ〉) + 1 · (A2, T
3/〈γ〉)+ 5 2 · (A2, T
3/〈β, γ〉) + 5 · (A1, T 3/〈β, γ〉)
D4 2 · (D4, T 3/〈β, …