www-ai.cs.tu-dortmund.de/LEHRE/PG/PG445/literatur/goethals_2002a.pdf
+ 4 + 1 + 0 + · · ·+ 0 = 10
and
KK ∗ 5(L) = KK ∗
4(L 1) + KK ∗
4(L 2) + KK ∗
4(L 3) + KK ∗
4(L 4)
+ KK ∗ 3((L
5)6) + KK ∗ 3((L
5)7) + KK ∗ 3((L
5)8) + KK ∗ 3((L
5)9)
+ KK ∗ 4(L
6) + KK ∗ 4(L
7) + KK ∗ 4(L [...] explicitly state this.
Example 4.1. Let L be the set of 13 patterns of size 3:
{{3, 2, 1}, {4, 2, 1}, {4, 3, 1}, {4, 3, 2}, {5, 2, 1}, {5, 3, 1}, {5, 3, 2}, {5, 4, 1}, {5, 4, 2}, {5, 4, 3}, {6, 2, 1}, {6, 3, 1} [...] . . . . . . . . . . . . 64 4.4 Generalized Upper Bounds . . . . . . . . . . . . . . . . . . . . 68
4.4.1 Generalized KK -Bounds . . . . . . . . . . . . . . . . . . 68 4.4.2 Generalized KK ∗-Bounds . …