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Process Mining 1.0
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event log



Event Log – Incident Management Process
Extracted From HP Service Manager @ Rabobank
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Prescriptive Analytics

Predictive Analytics

Diagnostic Analytics

Descriptive Analytics

The Evolution of Process Mining
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Process Mining 1.0 
Automated Process Discovery 

& Analysis

Process Mining 2.0
Predictive Process Monitoring

Automated Process Improvement



Operational 
Level

Predictive Process 
Monitoring

Predicting future states, outcomes, 
or properties of a process instance 
or group of process instances

Prescriptive process 
monitoring

Recommending actions on the 
basis of predictions to maximize a 
performance indicator

Tactical 
Level

Robotic process 
mining

Discovering and automating 
routines from user interactions

Search-Based 
Process Optimization

Assessing and discovering 
improvement opportunities from 
event logs

Process Mining 2.0
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Predictive Process Monitoring

• What is the next activity for this case?

• When is this next activity going to take place?

• How long is this case still going to take until it is finished?

• What is the outcome of this case? 

• Is the compensation going to be paid? Or rejected?
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Predictive Process 
Monitoring

Event 
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Predictive Process Monitoring: 
General Approach



Predictive Process Monitoring Approaches

Teinemaa et al. Outcome-Oriented Predictive Process Monitoring: Review and Benchmark. TKDD 13(2):17:1-17:57, 2019.

Verenich et al. Survey and Cross-benchmark Comparison of Remaining Time Prediction Methods in Business Process Monitoring. 

TIST 10(4), 2019.



• Predict process outcome – Is this loan offer going to be rejected?

• Predict process performance – Will this claim take more than 5 days to be handled?

• Predict future events – What activity is likely to be executed next? And after that?

Event log
Training module

Training Validation

Predictor Dashboard

Runtime module

Information system

Predictions
Stream 
(Kafka)

Predictive
model(s)

Event  stream Event  stream

Batched 
Predictions

(CSV)

Apromore

Predictive process monitoring (Apromore)
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http://apromore.org

http://apromore.org/


Explaining 
predictions

Helping users 
understand the 

causes of predicted 
outcomes

Turning 
predictions 
into actions

Prescriptive 
process monitoring

Challenges in Predictive Process Monitoring
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Prescriptive process monitoring
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Teinemaa et al. “Alarm-Based Prescriptive Process Monitoring”. Proceedings of BPM Forum’2018



Search-Based
Process Optimizer

Domain Knowledge

IoT, Web & social 

sensing streams 

Automated Process Improvement

Enterprise System



Example: Improvement Opportunities

1
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Officer

Clerk

Clerk Officer

Officer

Clerk

Skip credit history 

check when customer has 

previous loans  with bank

Allocate an additional clerk 

on Monday-Tuesdays, one 

less officer on Fridays

This task can be 

automated with an RPA 

script

For consumer loans, 

check credit history 

before income 

sources

If loan-to-annual-

income ratio > 1.5, 

allocate a senior officer

If credit rating is C or D, 

do not wait for appeal



Given 

• one or more event logs recording the 
execution of one or more processes

• one or more performance measures that 
we seek to maximize/minimize

• a process model, decision rules and 
resource allocation rules

• a set of allowed changes to the process 
model and associated rules

Find 
• Possible sets of changes to the process 

to optimize the performance measures

Automated Process Improvement



Task

• Automate individual tasks or groups of tasks

• Recommend best practices for task execution

Control-flow

• Task elimination/addition

• Task merging/splitting

• Task re-ordering, parallelization 

Decision (data)

• Add / delete decision points

• Refine / enhance decision rules

Resource

• Re-allocate resources

• Refine / enhance resource allocation policies

Automated Process Improvement
Types of Changes



Automated Process Improvement
18

18

Execution data

Executable routine 

specifications

Robotic Process 
Mining 

(Task Automation)

Decision Rule 
Optimization

Flow Optimization

Optimized process 
model

Resource 
Optimization

Decision rules

Optimized resource 
allocation policies

Optimized decision 
rules



Robotic Process Mining: 
Synthesis of RPA Scripts for Task Automation
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[copy to clipboard]

A task is automatable if every step in the

task can be deterministically executed

based on input data, or data produced by

previous actions

[select cell C1]

[select cell C2]

[edit cell C2]

20

Automatable Task
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1

Automatable Task
Example
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Starting Point: UI log
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V. Leno, A. Polyvyanyy, M. La Rosa, M. Dumas and F. Maria Maggi. Action logger: Enabling process mining 

for robotic process automation. In Proceedings of Demonstration Track at BPM 2019, 124–128, 2019



Robidium: Synthesizing RPA Scripts From UI Logs

Segmentation

Routine 

Extraction

Transformation 

Discovery

UI log

Automatable 

Routines

Simplification

Candidate 

Routines

Segmented 
UI log



Transformation discovery

1

4

For each edit action:

 Collect the target element and its value

 Collect corresponding source elements and their values

 Create input-output transformation examples (Input, Output, Source, Target) 

Edit action Output

Read action Source Input

Target
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Extracting examples from candidate routines

For each candidate routine trace:

 Collect the values of all read cells/fields (Inputs)

 Collect the latest values of all modified cells/fields (Outputs)

 Create input-output transformation example (Inputs, Outputs) 

Inputs = [“Albert”, “Rauf”, 

“11/04/1986”, “+61 043 512 

4834”, “arauf@gmail.com”, 

“Germany”, “99 Beacon Rd, 

Port Melbourne, VIC 3207, 

Australia”]
Outputs = [“Albert Rauf”, “11-04-

1986”, “Germany”, “043-512-

4834”, “arauf@gmail.com”, “99 

Beacon Rd”, “Port Melbourne”, 

“VIC”, “3207”, “Australia”]



327

Transformation discovery

FOOFAH – transformation discovery by example

 Program synthesis as a search problem in a state space graph

 Heuristic search approach based on A* algorithm

 Cost function is the amount of manipulations

 Deals with string and table manipulations

+61 039 689 9324

+61 035 341 2938

+61 079 149 3015

+61 039 689 9324

+61 035 341 2938

+61 079 149 3015

039 689 9324

035 341 2938

079 149 3015

+61 039 689 9324

+61 035 341 2938

+61 079 149 3015

039 689 9324

035 341 2938

079 149 3015

039 689 9324

035 341 2938

079 149 3015

split_first(0, ‘ 

‘)

split(0, ‘ ‘)

drop(0, ‘ ‘)

drop(0, ‘ ‘) join(0, ‘ ‘)

join(0, ‘ ‘)

Input Output
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Transformation discovery
FOOFAH – transformation discovery by example

 Program synthesis as a search problem in state space graph

 Heuristic search approach based on A* algorithm

 Cost function is an amount of manipulations

 Deals with string and table manipulations

+61 039 689 9324

+61 035 341 2938

+61 079 149 3015

+61 039 689 

9324

+61 035 341 

2938

+61 079 149 

3015
039 689 9324

035 341 2938

079 149 3015

split_first(0, ‘ ‘)

split(0, ‘ ‘)

drop(0, ‘ ‘)

drop(0, ‘ 

‘)
join(0, ‘ ‘) join(0, ‘ ‘)

Input Output

+61 039 689 9324

+61 035 341 2938

+61 079 149 3015

039 689 9324

035 341 2938

079 149 3015

039 689 9324

035 341 2938

079 149 3015



Robidium: Synthesizing RPA Scripts From UI Logs
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Robidium: 
Robotic Process Mining

Tool (hosted version)

• http://robidium.cloud.ut.ee

Video demo

• https://youtu.be/24-pjFshquk
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http://robidium.cloud.ut.ee/
https://youtu.be/24-pjFshquk


Automated Process Improvement
32
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Execution data

Executable routine 

specifications

Robotic Process 
Mining 
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How to determine if a given process change would 

improve a business process and by how much?



3

Data-Driven Process Simulation

Camargo et al. Automated Discovery of Simulation Models for Event Logs, Decision Support Systems, to appear, 2020

https://github.com/AdaptiveBProcess/Simod

https://github.com/AdaptiveBProcess/Simod


The Next Frontier: Search-Based Process Optimization
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https://sep.cs.ut.ee/Main/PIX

The Process Improvement Explorer (PIX)

https://sep.cs.ut.ee/Main/PIX


• Natural Language Processing (NLP) for BPM

• Natural Language in Business Process Models - Theoretical Foundations, Techniques, and 

Applications. Lecture Notes in Business Information Processing 168, Springer 2013

• Rule mining from event logs

• RuM: https://rulemining.org/

• Causal process mining

• https://www.linkedin.com/pulse/causal-process-mining-marlon-dumas/

• Automated reasoning and planning for goal-based synthesis of processes

• …

There’s much more AI can do for BPM

https://rulemining.org/
https://www.linkedin.com/pulse/causal-process-mining-marlon-dumas/
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